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ABSTRACT: The stiffness and strength of a composite
material in form of laminate is obtained from the properties
of the constituent laminae. The stacking sequence of the
laminate affects the mechanical behavior. The interface be-
tween different laminae is also an important factor, since it
influences the stresses that are developed in the laminate,
and hence the strengths. In this study, a theoretical investi-
gation of the mechanical behavior of symmetrical laminates
made of isotropic layers [Lexan (PCBA) and Plexiglas
(PMMA)] was attempted. An analysis based on the lamina-

tion theory was performed to determine the stress distribu-
tion and strains as well as the elastic constants. Experimental
measurements with specimens made of laminates with dif-
ferent stacking sequences were carried out. The obtained
values were compared with the theoretical values given by
the lamination theory and mechanics of materials approach.
© 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3215–3226, 2006
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INTRODUCTION

A laminate is a stack of laminae of isotropic or noniso-
tropic materials. In recent years, laminated composite
materials present great interest especially for light-
weight constructions demanding high strength. Lam-
inated composites consist of layers of at least two
different materials that are bonded together. Lamina-
tion is used to combine the best aspects of the constit-
uent layers to achieve a more useful material. The
properties that can be emphasized by lamination are
strength, stiffness, low weight, corrosion resistance,
wear resistance, thermal insulation, acoustical insula-
tion, etc. A major purpose of lamination is to tailor the
directional dependence of strength and stiffness of a
material to match the loading environment of the
structural element. Laminates are uniquely suited to
the this objective, since when they are made of layers
of unidirectional fibers, the principal material direc-
tions of each layer can be obtained according to the
need. They are also made of isotropic layers and are
usually known as sandwich materials. Laminated
composites have been considered theoretically by
many investigators. In ref. 1, a theoretical solution was
proposed for the case of a multilayered laminated
composite beam under end load. Ref. 2 represents a
more general solution than the previous one. Ref. 3

presents a plane stress solution applicable to a thin-
walled cantilever beam with end load. Ref. 4 extended
the preceding result to include the influence of beam
width for the Saint-Venant solution to the bending of
a sandwich beam. Lauterbach et al. presented a finite
element solution for Saint-Venant bending in ref. 5.
Erdogan and Arin6 considered cracked sandwich
plates and performed a mathematical evaluation of
the stress intensity factors. In ref. 7, a study of the
effect of thickness, stiffness, and the mass of the fac-
ings on the wave propagation and vibrations in an
elastic symmetrical sandwich plate was carried out. In
ref. 8, the crack propagation in Lexan (PCBA) and
Plexiglas (PMMA) sandwich plates was studied by
using the method of dynamic caustics together with
high-speed photography.

In the present work, the laminates used are made of
isotropic plastic materials [Lexan (PCBA) and Plexi-
glas (PMMA)], forming symmetrical laminates. If mul-
tiple isotropic layers of various thicknesses are ar-
ranged symmetrically about a middle surface from
both a geometric and a material property standpoint,
the resulting laminate does not exhibit coupling be-
tween bending and extension. However, many phys-
ical applications of laminated composites require non-
symmetrical laminates to achieve design require-
ments.

THEORETICAL ANALYSIS

A composite laminate is made of two or more layers
bonded together to act as a whole structural element.
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The stiffness of such a material depends on the prop-
erties of the layers.

Classical lamination theory contains a collection of
stress. By the use of this theory from the initial basic
building block, the lamina, we can proceed to the final
element, which is a structural laminate.

The material we deal is a laminate made of 3, 4, and
5 layers of isotropic material.

In plane stress conditions, in xyz axis system, the
stress–strain relationships are given.9
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The elements Qij of the stiffness matrix are related
with the material properties as follows
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Equation (1) can be thought of a stress–strain relation-
ship for the kth layer of a multi-layered laminate.
Thus, it can be written as

���k � �Q�k���k (3)

By substitution of the strain variation through the
thickness in this relationship, the stresses in the kth
layer can be expressed in terms of the laminate middle
surface strains and curvatures as
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where �x
0,�y

0,�xy
0 and 	x,	y,	xy are the middle surface

strains and curvatures, respectively, and z is the ordi-
nate through the thickness of the laminate.

The resultant forces and moments acting on a lam-
inate are obtained by integration of the stresses in each
layer through the laminate, for example
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where t is the laminate thickness.
The entire force and moment resultants for an N-

layered laminate is defined as
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where {N} and {M} are force per width and moment
per width, respectively.

When the lamina stress–strain relations, eq. (4), are
substituted and after some algebra, the following re-
lationships are obtained.
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where the matrices Aij, Bij, Dij are given as

Aij � �
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In eq. (10), the Aij are extensional stiffness, the Bij are
called coupling stiffness, and the Dij are called bend-
ing stiffnesses. The presence of the Bij implies cou-
pling between bending and extension of a laminate.
The above eqs. (8)–(9) can be written in a contracted
form:

� N
M � � � A B

B D �� �0

	 � or � N
M � � �K�� �0

	 � (11)

From this relationship, the middle surface and curva-
tures can be obtained by the inversion of the matrix
�K�, i.e.

� �0

	 � � �F�� N
M �

where

�F� � �K��1
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On the other hand, the elastic constants in the lam-
inate plane Ex, Ey, �xy, and Gxy can be determined by
the classical theory of laminated plates. Thus, Elastic
modulus, shear modulus, and Poisson ratio are eval-
uated by the aid of models that assume uniform stress
through the thickness of the laminate.

1
Ex

� A	11

1
Ey

� A	22 �xy �
� A	12

A	11

1
Gxy

� A	66 (12)

where A	ij � Aij
�1 and Aij �

1
t � �

k�1

N

�Qij�ktk�.

Here tk is the thickness of kth layer and t the thick-
ness of the whole laminate.

EXPERIMENTAL

The specimens were made of 3–5 layers in symmetri-
cal combination of Lexan (PCBA) and Plexiglas
(PMMA) layers having 2 
 10�3 m thickness each,
thus providing the form of a symmetrical laminate
[see Fig. 1(a)]. For the bonding of the layers, special
glue (trichloroethylene–dicloromethane 2/1) was
used. To measure the strains, longitudinal and trans-
versal strain gauges (KYOWA type with gauge length
2 mm) and Huggenberger extensometer were used.

Tensile experiments were carried out to measure
mechanical properties, using dogbone specimens with

total thickness varying from 6
 10�3 m to 10
 10�3 m
according to ASTM D638. The width of the specimens
was 3 
 10�3 m near the grips and varied from 12

 10�3 m to 19 
 10�3 m at the mid-length, whereas
the total length varied from 180 
 10�3 m to 260

 10�3 m [see Fig. 1(b)].

Special care was taken during the bonding of the
various layers.

The values of the elastic modulus, E, Poisson ratio,
�, and ultimate stress, �ult, for the materials used are
given in Table I.

THEORETICAL CALCULATIONS
AND RESULTS

Stresses and strains

The elements of the stiffness matrix Qij can be cal-
culated for each material from eq. (2) using the
values of E and � for Lexan and Plexiglas given in
Table I. Thus

�Qij�L � � 27702.40 9418.82 0
9418.82 27702.40 0

0 0 9141.79
� 
 105 �N

m2�
(13a)

�Qij�P � � 35798.45 11813.49 0
11813.49 35798.45 0

0 0 11992.48
� 
 105 �N

m
2�

(13b)

Now, for the first series, laminate (B1), with three
layers, from eq. (10)

Aij � �2�Qij�L � �Qij�P�h �N
m� (14)

Bij � 0 �N� (15)

Dij � ��Qij�P � 26�Qij�L�
h3

12�N m� (16)

where h � tL � tP � 2 
 10�3m denotes the thick-
ness of each layer.

The �K� and �F� matrices given in eqs. (11) and (12)
are found as

TABLE I
Elastic Modulus, Poisson Ratio, and Ultimate

Stress of Lexan and Plexiglas

Material E (GPa) � �ult (MPa)

Plexiglas 3.19 0.33 61.2
Lexan 2.45 0.34 48.8

Figure 1 (a) Schematic representation of the material used.
(b) Schematic representation of the specimens used for the
experiments.
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�K� � 	
18240.65 6130.23 0
6130.23 18240.65 0 sym.

0 0 6055.21
0 0 0 529.24 179.69 0
0 0 0 179.69 529.24 0
0 0 0 0 0 174.78


 
 105 (17)

and

F � 	
6 � 2 0

� 2 6 0 sym.
0 0 17
0 0 0 214 � 73 0
0 0 0 � 73 214 0
0 0 0 0 0 572


 (18)

For the second series, laminate (B2), with three layers,
by the same manner we can find

Aij � �2�Qij�P � �Qij�L�h �N
m� (19)

Bij � 0 �N� (20)

Dij � ��Qij�L � 26�Qij�P�
h3

12 �N m� (21)

�K� � 	
19859.86 6609.16 0 sym.
6609.16 19859.86 0

0 0 6625.35
0 0 0 670.92 221.60 0
0 0 0 221.60 670.92 0
0 0 0 0 0 224.66


 
 105 (22)

and

�F� � 	
6 � 2 0

� 2 6 0 sym.
0 0 15
0 0 0 167 � 55 0
0 0 0 � 55 167 0
0 0 0 0 0 445


 (23)

If we compare the matrix �K� of this laminate with the
previous one (B1), we observe that there is a slight

increase in the terms, which is due to the different
stacking sequence of the Lexan and Plexiglas layers.

For the third series, laminate (C1), with four layers,
from eq. (10)

Aij � ��Qij�L � �Qij�P�2h �N/m� (24)

B � 0 �N� (25)

Dij � �7�Qij�P � �Qij�L�
2h3

3 �N m� (26)

�K� � 	
25400.34 8492.92 0
8492.92 25400.34 0 sym.

0 0 8453.71
0 0 0 1474.95 488.20 0
0 0 0 488.20 1474.95 0
0 0 0 0 0 493.37


 
 105 (27)

and

�F� � 	
4 � 1 0

� 1 4 0 sym.
0 0 12
0 0 0 76 � 25 0
0 0 0 � 25 76 0
0 0 0 0 0 203


 (28)

If we compare the matrix �K� with that of laminates
(B1) and (B2), we observe that there is a considerable
increase in all terms something expected, since the
thickness of the laminate increased.

For the fourth series, laminate (E1), with five layers,
from eq. (10)

Aij � �3
2�Qij�L � �Qij�P�2h �N/m� (29)
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Bij � 0 �N� (30)
Dij � ��Qij�P �

99
26�Qij�L�13h3

6 �N m� (31)

�K� � 	
30940.82 10376.69 0
10376.69 30940.82 0 sym.

0 0 10287.07
0 0 0 2444.16 824.82 0
0 0 0 824.82 2444.16 0
0 0 0 0 0 80967


 
 105 (32)

and

�F� � 	
4 � 1 0

� 1 4 0 sym.
0 0 9
0 0 0 46 � 16 0
0 0 0 � 16 46 0
0 0 0 0 0 124


 (33)

Again, the terms of matrix �K� of this laminate (E1)
show an increase when compared with the terms of
laminate (C1) due to the increase of thickness.

For the fifth series, laminate (E2), again with five
layers, from eq. (10)

Aij � �3
2�Qij�P � �Qij�L�2h �N/m� (34)

Bij � 0 �N� (35)

Dij � ��Qij�L �
99
26�Qij�P�13h3

6 �N m� (36)

�K� � 	
32560.03 10833.02 0
10855.62 32560.03 0 sym.

0 0 10852.20
0 0 0 2837.41 941.14 0
0 0 0 941.16 2837.41 0
0 0 0 0 0 948.14


 
 105 (37)

and

�F� � 	
3 � 1 0

� 1 3 0 sym.
0 0 9
0 0 0 40 � 13 0
0 0 0 � 13 40 0
0 0 0 0 0 105


 (38)

Now, if we compare the matrix �K� of this laminate (E2)
with the previous one of Lam. (E1), we observe again
that there is a slight increase in the terms due to the differ-
ent stacking sequence of the Lexan and Plexiglas layers.

To proceed to the calculation of the stresses of the
material, let us take into account eq. (12).

For the first series, laminate (B1), by the aid of eq.
(18), we obtain

�
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�y
0

�xy
0

	x

	y

	xy

� � 	
6 � 2 0

� 2 6 0 sym.
0 0 17
0 0 0 214 � 73 0
0 0 0 � 73 214 0
0 0 0 0 0 572


�
Nx

Ny

Nxy

Mx

My

Mxy

� (39)

The strains are calculated by taking under consider-
ation eqs. (3) and (4) as

� �x

�y

�xy
� � � �x

0

�y
0

�xy
0 � � z� 	x

	y

	xy
� (40)

For uniaxial tension Nx � N, Ny � Nxy � Mx

� My � Mxy � 0. Thus �x � 6 
 10�5Nx, �y

� � 2 
 10�5Nx, and �xy � 	x � 	y � 	xy � 0. By
substituting these values in eq. (3), the stresses in each
layer can be found as

In Lexan �x � 1.5165Nx, �y � 0.0067Nx, �xy � 0
In Plexiglas: �x � 1.9671Nx, �y � � 0.0134Nx,

�xy � 0

It is obvious that while the stress �x is positive in
both layers, negative �y develops in Plexiglas. This is
due to the fact that Lexan tends to deform transver-
sally more than Plexiglas. But, since this is hindered, it
results to the creation of �y.

The variations of stresses is illustrated in Figure
2(a). From this figure, it can be observed that �y fulfils
the equilibrium condition since 2 
 0.0067Nx

� 0.0134Nx � 0.
For laminate (B2), by similar procedure we obtain

the following:

TENSILE BEHAVIOR OF SYMMETRICAL LAMINATES 3219



In Lexan: �x � 1.391Nx, �y � 0.0113Nx, �xy � 0
In Plexiglas: �x � 1.8044Nx, �y � � 0.0057Nx,

�xy � 0

The variation is illustrated in Figure 2(b).
For laminate (C1) in a similar way we obtain

In Lexan: �x � 1.0883Nx, �y � 0.0069Nx, �xy � 0
In Plexiglas: �x � 1.4117Nx, �y � � 0.0069Nx,

�xy � 0

The variation of stresses is illustrated in Figure 3.
For laminate (E1) similarly we obtain:

In Lexan: �x � 0.8938Nx, �y � � 0.0046Nx, �xy

� 0
In Plexiglas: �x � 1.1593Nx, �y � � 0.0070Nx,

�xy � 0

The variation is illustrated in Figure 4.
Finally for laminate (E2), we obtain

In Lexan: �x � 0.8487Nx, �y � � 0.0063Nx, �xy

� 0
In Plexiglas: �x � 1.1009Nx, �y � � 0.0042Nx,

�xy � 0

The variation is illustrated in Figure 5.
Next, the strains for the case of uniaxial tension will

be calculated. To make comparison in each case, the
strains for equivalent Lexan and Plexiglas material
also are given.

For laminate (B1) and for Nx, force per unit width in

�N
m� or �kp

cm�, if we use Lexan with total thickness t

� 3h � 3 
 0.2 � 0.6 cm, then

�x �
�x

EL
�

Nx/b t
EL

�
Nx

3h 
 24500 � 6.8 
 10�5Nx

�y � � ��x � � 0.34�x � � 2.3 
 10�5Nx

If we use Plexiglas with t � 3h � 3 
 0.2
� 0.6 cm, then the strain distribution is

�x �
�x

Ep
�

Nx/bt
Ep

�
Nx

3h 
 31900 � 5.2 
 10�5,

�y � � ��x � � 0.33�x � � 1.7 
 10�5Nx.

By the aid of eqs. (12) and (40), we obtain

In Lexan: �x � 6.8 
 10�5Nx, �y � � 2.3

 10�5Nx, �xy � 0

Figure 3 Variation of laminate stresses �x and �y for lam.
C1.

Figure 4 Variation of laminate stresses �x and �y for lam.
E1.

Figure 2 Variation of laminate stresses �x and �y for lam-
inates B1 and B2.
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In Plexiglas: �x � 5.2 
 10�5Nx, �y � � 1.7

 10�5Nx, �xy � 0

In the Laminate: �x � 6.0 
 10�5Nx, �y �
� 2.0 
 10�5Nx, �xy � 0

The variation of these strains is illustrated in Figure
6.

For laminate (B2) through a similar procedure we
obtain:

In Lexan: �x � 6.8 
 10�5Nx, �y � � 2.3

 10�5Nx, �xy � 0

In Plexiglas: �x � 5.2 
 10�5Nx, �y � � 1.7

 10�5Nx, �xy � 0

In the Laminate: �x � 6.0 
 10�5Nx, �y

� � 2.0 
 10�5Nx, �xy � 0

The variation is illustrated in Figure 7. It can be
observed that the strains are the same as in the previ-
ous case, although the stacking sequence is different.

For laminate (C1) with t � 4h � 4 
 0.2
� 0.8 cm we obtain

In Lexan: �x � 5.1 
 10�5Nx, �y � � 1.7

 10�5Nx, �xy � 0

In Plexiglas: �x � 3.9 
 10�5Nx, �y � � 1.0

 10�5Nx, �xy � 0

In the Laminate: �x � 4 
 10�5Nx, �y � � 1.0

 10�5Nx, �xy � 0

The variation is illustrated in Figure 8.
For laminate (E1) with t � 5h � 5 
 0.2

� 1 cm, we obtain

In Lexan: �x � 4.1 
 10�5Nx, �y � � 1.4

 10�5Nx, �xy � 0

In Plexiglas: �x � 3.1 
 10�5Nx, �y � � 1.0

 10�5Nx, �xy � 0

In the Laminate: �x � 4.0 
 10�5Nx, �y �
� 1.0 
 10�5Nx, �xy � 0

The variation is illustrated in Figure 9.
Finally, for laminate (E2), we obtain
In Lexan: �x � 4.1 
 10�5Nx, �y � � 1.4


 10�5Nx, �xy � 0
In Plexiglas: �x � 3.1 
 10�5Nx, �y � � 1.0


 10�5Nx, �xy � 0

Figure 5 Variation of laminate stresses �x and �y for lam.
E2.

Figure 6 Variation of laminate strains �x and �y for lam. B1.

Figure 7 Variation of laminate strains �x and �y for lam. B2.

Figure 8 Variation of laminate strains �x and �y for lam. C1.
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In the Laminate: �x � 3.0 
 10�5Nx, �y
� � 1.0 
 10�5Nx, �xy � 0

The variation is illustrated in Figure 10. It can be
easily observed that the strain �x is different in this
case when compared with the previous one, whereas
the strain �y is the same although the number of layers
and the total thicknesses are equal but the stacking
sequence is different.

Elastic constants

Let us now calculate the elastic constants of the dif-
ferent laminates used. In this analysis, the laminate is
considered as consisted of a layer of a homogeneous
material. The calculations will be carried out through
eqs. (12) and through the approximate formulae of the
rule of mixtures.

Ec � ELUL � EpUp (41)

�c � �LUL � �pUf (42)

whereEL, �L, and UL denote the elastic modulus, Pois-
son ratio, and volume fraction of the Lexan and Ep, �p,
and Up are those of the Plexiglas, respectively. The
volume fractions are given as the ratios of the volume
of each material to the total volume of the laminate
and with UL � Up � 1. Using the values given in
Table I for E and � and the values of �K� matrix for Aij,
Bij and Dij given in eqs. (17), (22), (27), (32), and (37) by
the aid of eqs. (12) and (2), the values of the laminate
elastic modulus and Poisson ratio can be obtained.
These values appear in Table II and Table III, respec-
tively. It can be observed that there is a very good
coincidence between the values of Poisson ratio calcu-
lated by the laminate theory given in eqs. (12) and
those calculated by the approximate theory of the rule
of mixtures given in eq. (42). Also, it can be said that
the stacking sequence of the laminate does not influ-
ence the Poisson ratio, whereas it influences slightly
the elastic modulus the maximum value of which is
for Lam. B2 and the minimum for Lam. B1. The rank-
ing for the elastic modulus for the various laminates is
B1, E1, C1, E2, and B2, whereas for the Poisson ratio is
B2, E2, C1, E1, and B1, which is the opposite. Thus, it
can be said that the laminates with the least number of
layers constitute the maximum and the minimum for
the elastic constants.

Determination of the ultimate load carrying
capacity

It is required to determine the ultimate load carrying
capacity of a laminate, defined as one consisting of
two or more dissimilar materials, under a tensile load
P. The laminate is composed of 3, 4, or 5 layers of

Figure 9 Variation of laminate strains �x and �y for lam. E1.

Figure 10 Variation of laminate strains �x and �y for lam.
E2.

TABLE II
Theoretical Values of the Laminate Elastic Modulus

Laminate Ec (GPa) (Ec)approx (GPa)

B1 2.697 2.696
B2 2.943 2.946
C1 2.820 2.820
E1 2.746 2.746
E2 2.894 2.894

TABLE III
Theoretical Values of the Laminate Poisson Ratio

Laminate �c (�c)app

B1 0.336 0.337
B2 0.333 0.333
C1 0.334 0.335
E1 0.335 0.336
E2 0.333 0.334
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isotropic material (Lexan/Plexiglas) with thickness 2
mm for each layer as mentioned previously.

Since strains in all layers at a particular cross section
are equal

�L � �P3
�L

EL
�

�P

EP
(43)

which yields

�L �
EL

EP
�P or �P �

EP

EL
�L (44a,b)

From these relationships by using the values of Table
I, we have

(a) If �c
ult. � �P

ult. � 61.2 MPa3 �L � 47 MPa � �L
ult.

(45)

(b) If �c
ult. � �L

ult. � 48.8 MPa3 �P � 63.54 MPa � �P
ult.

(46)

The subscripts C,L,P denote the composite, the Lexan,
and the Plexiglas, respectively. The first relationship
states that when the ultimate stress for Plexiglas is
reached, the stress value in Lexan is less than its
ultimate, whereas the second relationship states that
when the ultimate stress for Lexan is reached, the
stress value in Plexiglas has been exceeded.

Therefore, the criteria of failure of the laminate is
Plexiglas and the mean ultimate load carrying capac-
ity of the material is

1. For series B

P � �P
ult. 
 bP 
 tP � �L 
 bL 
 tL 
 2 (47)

where bP and bL denote the width and tP and tL denote
the thickness of the Lexan/Plexiglas layers, which are
equal to h.

The above relationship by using the values of eqs.
(44)–(46) given that the thickness of each layer was 2
mm and the nominal width varied from 12 to 19 mm
depending on each series (in this one is 12.27 mm)
yields

P � �61.2 
 106 
 12.27 
 10�3 
 2 
 10�3 � 47


 106 
 12.27 
 10�3 
 2 
 10�3 
 2� � 3808.6 N

A check should be made on the ultimate load on the
laminate after the failure of Plexiglas. In this case, the
ultimate load that the material is able to support is

P	 � 48.8 
 106 
 12.27 
 10�3 
 2


 10�3 
 2 � 2395 N

2. For series C

P � �P
ult. 
 bP 
 tP 
 2 � �L 
 bL 
 tL 
 2 (48)

The above relationship by using the values of eqs.
(13a) and (13b) and given that the thickness of each
layer was 2 mm and the mean width 18.07 mm yields

P � �61.2 
 106 
 18.07 
 10�3 
 2 
 10�3 
 2 � 47


 106 
 18.07 
 10�3 
 2 
 10 
 2� � 7820.7 N

In this case, the ultimate load that the material is able
to support is

P	 � 48.8 
 106 
 18.07 
 10�3 
 2


 10�3 
 2 � 3527.3 N

3. For series E

P � �P
ult. 
 bP 
 tP 
 2 � �L 
 bL 
 tL 
 3 (49)

Similarly, the above relationship given that the thick-
ness of each layer was 2 mm and the mean width 18.04
mm yields

P � �61.2 
 106 
 18.04 
 10�3 
 2 
 10�3 
 2 � 47


 106 
 18.04 
 10�3 
 2 
 10�3 
 3� � 9503.4 N

Again, in this case, the ultimate load that the materials
able to support is

P	 � 48.8 
 106 
 18.04 
 10�3 
 2 
 10�3 
 3

� 5282.1 N

RESULTS

Figure 11 illustrates the initial part of the stress–strain
diagram for Lexan and Plexiglas as derived from
tensile experiments by using mechanical gauges
(Hüggenberger) for the determination of the longitu-
dinal strain. From these diagrams the elastic moduli of
Lexan and Plexiglas were evaluated as 2.45 GPa and
3.19 GPa, respectively. Both diagrams show a strong
linear behavior for the variation of the stress versus
strain for the two materials. It can be observed that
Lexan is a ductile material and its cross section de-
creases until the rupture of the material. Its failure
almost coincides with its yielding and it is a material
that it can be “trusted” when working in large strains.
On the contrary, Plexiglas looks like a brittle material
but its strength is better than Lexan. As a conclusion it
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can be said that from the combination of these two
materials and through different stacking sequences, a
mean behavior can be expected. In this, Lexan nor-
mally will contribute by its ductility and Plexiglas by
its strength.

Figures 12–14 present the initial part of the stress-
strain diagram for the series B1, C1, and E1, respec-
tively, as obtained from tensile experiments by using
again mechanical gauges for the determination of the
longitudinal strain. From these diagrams the elastic
moduli for the three material were evaluated as
3.01 GPa, 3.10 GPa, and 2.87 GPa, respectively. Again,

in all diagrams, it can be observed that the variation of
the stress versus strain shows a strong linear behavior.
The variation of stress versus strain for the series B1,
C1, and E1 where the percentage of Plexiglas is 1/3,
1/2, and 2/5, respectively, as obtained from tensile
experiments by using electrical strain-gauges is illus-
trated in Figures 15–17. The initial part of the dia-
grams, served for the evaluation of the elastic modu-
lus appears in Figures 15(a)–17(a).

The mean values for ultimate stress, elastic modu-
lus, and Poisson ratio obtained experimentally are
presented in Table IV.

It can be observed that Lam. B1 presents the highest
strength, although the percentage of Plexiglas, which
has higher strength than lexan, is the lowest of the
series. On the other hand, Lam. C1 presents the high-
est elastic modulus that is reasonable, since this series
has the highest percentage of Plexiglas and the elastic
modulus of which is higher than lexan. Normally, the
laminate with higher percentage of Plexiglas should
have higher elastic modulus as it can be seen in Table
II in the theoretical values of elastic modulus, which
were evaluated as 2.70 GPa, 2.82 GPa, and 2.75 GPa
for laminates B1, C1, and E1, respectively, the fact that
it is not true in the experimental results where Lam. B1

Figure 11 Variation of stress �x vs. strain �x for the Lexan
and Plexiglas as derived from tensile experiments using
mechanical gauges.

Figure 12 Variation of stress �x vs. strain �x for the lam. B1
used as derived from tensile experiments using mechanical
gauges.

Figure 13 Variation of stress �x vs. strain �x for the lam. C1
used as derived from tensile experiments using mechanical
gauges.

Figure 14 Variation of stress �x vs. strain �x for the lam. E1
used as derived from tensile experiments using mechanical
gauges.
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has the highest elastic modulus from the measure-
ments received through strain-gauges. On the con-
trary, from the measurements received through me-
chanical strain-gauges, the elastic modulus of Lam. C1
is the highest that is in accordance with the theoretical
values. The discrepancy can be attributed to the dif-
ference between the two types of gauges.

It is worth mentioning that the elastic moduli ob-
tained through mechanical gauges are higher than
those obtained through electrical strain-gauges, which

in turn yield elastic moduli higher than the theoretical
results.

The experimental Poisson ratio, �c, of the laminates
was determined by the ratio of the transversal strain to
the longitudinal strain. The mean values are presented
in Table IV. It can be observed that Lam. B1 has the
highest Poisson ratio among the laminates investi-
gated and that these values present similar behavior
as the ultimate stress. On the other hand, it can be
said that there is a discrepancy between the exper-
imental results obtained and the theoretical values
of Table III for all types of laminates, and that in all
cases, experimental values are superior to the theo-
retical ones.

As to the failure of the laminates, a general obser-
vation concerning the fracture mechanism can be
stated: when the applied load increases, the bonding
at the interface of the layers seems to weaken and
failure occurs in lines lying at planes perpendicular
to the loading direction. The phenomenon starts
from the neck of the specimen and moves up and
down towards the grips. It can observed that this
phenomenon progresses even in the grips. This con-
tinues up to whitening covers the specimen. The
fracture surface is almost plane and perpendicular
to the specimen axis, which means that the failure
occurred only from normal stresses. After the frac-
ture of the specimens, an effort was made to sepa-
rate the layers of the materials from each other,
something that was impossible. The layers contin-
ued to be strongly bonded, the fact that led to the
conclusion that the cracks started in a material

Figure 15 Variation of stress �x vs. strain �x for the lam. B1
used as derived from tensile experiments using strain-
gauges (a) initial part and (b) entire curve.

Figure 16 Variation of stress �x vs. strain �x for the lam. C1
used as derived from tensile experiments using strain-
gauges (a) initial part and (b) entire curve.

Figure 17 Variation of stress �x vs. strain �x for the lam. E1
used as derived from tensile experiments using strain-
gauges (a) initial part and (b) entire curve.
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rather than in an interface. This material probably
was Plexiglas, which as a less ductile material can-
not follow the large deformations of Lexan. This
hypothesis is reinforced by the fact that the more
was the percentage of Lexan the more “whitening”
appeared before fracture and the more was the final
deformation.

Finally, if we compare the ultimate load carrying
capacity of the laminates under a tensile load P as
derived from eqs. (44)–(46) with experimental results
[see Table V], we can observe that there is a discrep-
ancy between the “theoretical” values and the mean
experimental ones and that the experimental results
are in all cases larger. This means the construction of
the laminates examined was good.

CONCLUSIONS

From the comparison of theoretical and experimental
results of the different types of laminates we conclude

1. The appropriate combination of the layers and the
position of each one in the laminate can have as
result the increase of the strength.

2. Depending on the position of each layer and the
combination in the laminate, an increase in the
experimental values of the elastic modulus and
Poisson ratio appears compared with the respective
theoretical ones.

3. The Elastic modulus of all types of the laminates
examined remains between the values of the pure
Lexan and pure Plexiglas, i.e., ELex � ELam � EPl.

4. The mean experimental values for the ultimate load
are greater than the “theoretical” ones but the dif-
ference is not too considerable.
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TABLE IV
Experimental Values of Elastic Modulus, Poisson Ratio, and Ultimate Stress of the Materials Used

Material

Experimental modulus

Experimental
Poisson ratio �c

Experimental
ultimate stress

�c
ult (MPa)

Ec (GPa)
(Hüggenberger)

Ec (GPa)
(strain-gauge)

Lexan 2.45 0.34 48.8
Plexiglas 3.19 0.33 61.2
Lam.B1 3.01 2.85 0.38 00.1
Lam.Cl 3.10 2.82 0.36 57.8
Lam.E1 2.87 2.79 0.37 58.0

TABLE V
Experimental and “Theoretical” Ultimate Load Carrying

Capacity of the Laminates Used

Material Pexp (N) P (N)

Lam.B1 4,576.7 3,808.6
Lam.El 8,460.2 7,820.7
Lam.E1 10,625.1 9,503.4
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